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Overview

´ Spinodal decomposition (SD) is an analogue to 2D MHD in terms of
dynamics and turbulence, with many similarities and some differences.

´ We study and compare the turbulence spectra, turbulent transport and
memory of the two systems.

´ Both are multi-scale problems,with bi-directional cascades.Memory
is critical to nonlinear transfer and transport in both.

´ The mean square concentration in 2D SD has an inverse cascade,
which is an analogue to the mean square magnetic potential inverse
cascade in 2D MHD.The fluid blob coalescence process in spinodal 
decomposition is similar to magnetic flux blob coagulation in 2D
MHD.

´ The characteristic length scale of blobs grows if unforced. If external 
forcing at large scale is present, the turbulence can break up large
blobs into small ones. This can arrest the growth of the blob length 
scale, and meso-scale structure can be formed.

12/2/15APS DPP 2015

2



Outline
´ Introduction

´ What is Spinodal Decomposition (SD)?

´ Why should a plasma physicist care? 2D SD is a challenging analogue to 2D MHD

´ BasicTheory and comparison to 2D MHD

´ Basic Equations for Spinodal Decomposition

´ Ideal Conserved Quantities

´ Waves in SD and MHD

´ Length Scales of Spinodal Decomposition Turbulence

´ TurbulentTransport

´ Simulation Results and comparison to 2D MHD

´ Simulation Setup

´ 𝐻"/𝐻$spectrum 

´ Length Scale Growth

´ PDF of 𝜓/𝐴

´ Conclusion

´ Future work
12/2/15APS DPP 2015

3



Introduction

´ Spinodal decomposition (SD) is a second order phase transition 
for a binary fluid mixture, to pass from one thermodynamic phase to two 
coexisting phases. For example, at high enough temperature,water and
oil can form a single thermodynamic phase, and when it’s cooled down,
the separation of oil-rich and water-rich phases occurs.

´ Below is a simulation demonstration for an unforced case (Run 1). The 
plots are time evolution of pseudo-color plots of concentration field.
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In the beginning, the system is cooled down to 
just below the critical temperature, and keeps 
isothermal later on. Initially the concentration 
field is a random distribution of 1 or −1.

The blob coalescence process occurs.
Finally the blob length scale reaches the system
size. A-rich phase and B-rich phase are saperated
completely.

Unforced

Small scale
concentration field

A-rich 
phase 

B-rich 
phase 



Introduction

´ Above is a simulation demonstration for a case forced at large scale (Run 2). 

´ The most interesting point for plasma physicists is that the governing 
equations for 2D SD have many similarities to 2D MHD equations, though
are more challenging.

´ The study of 2D SD is a different way to understand 2D MHD turbulence,
and offers additional challenges.

12/2/15APS DPP 2015

5

12/2/15
APS DPP 2015

The same small scale concentration field initial 
condition as the unforced case.

The blob coalescence process occurs. Meso-scale structure is formed, and the 
saturated blob length scale is the Hinze Scale 𝐿* .

𝐿* 𝜉
Small scale
concentration field

Forced at large scale



Introduction

´ Physicists are interested in Spinodal Decomposition for more than 50 years. 

´ [Ruiz 1981] first pointed out the similarities between Spinodal
Decomposition and 2D MHD.

´ [Furukawa 2000] found that for unforced low viscous 2D Spinodal 
Decomposition, the blob length scale grows as a power law: 𝐿 𝑡 ~𝑡.// .

´ [Berti 2005] discovered that the blob coalescence process in 2D Spinodal
Decomposition can be arrested by sufficiently strong external forcing at
large scale.

´ [Perkelar 2014] did a Lattice-Boltzmann simulation on 3D Spinodal
Decomposition. They verified that the saturated length scale is the Hinze
scale.They studied the Energy spectrum in that case, and observed in the 
inertial range the energy content is suppressed compared to pure fluid
turbulence spectrum.

´ The usual application for spinodal decomposition is in alloy manufacture. 
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Basic Equations for SD

´ Define the concentration field 𝜓 𝑟, 𝑡 ≝ [𝜌$ 𝑟, 𝑡 − 𝜌6 𝑟, 𝑡 ]/𝜌.
𝜓 = −1 meansA-rich phase,𝜓 = 1 means B-rich phase.

´ The governing equation for SD is derived from the Ginzburg-Landau 
theory, the general theory for second order phase transition, with 𝜓
being the order parameter. Below is the free energy for SD,where 𝜉
is a parameter that describes the strength of the interaction:

Φ 𝜓 = :𝑑𝑟(−
1
2𝜓

. +
1
4𝜓

@ +
𝜉.

2 |𝛻𝜓|
.)
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Chemical potential 𝜇 = EF "
E"

= −𝜓 + 𝜓/ − 𝜉.𝛻.𝜓 Fick’s Law: 𝐽 = −𝐷𝛻𝜇

∴
𝑑𝜓
𝑑𝑡 + 𝛻 K 𝐽 = 0	 ⇒ 	

𝑑𝜓
𝑑𝑡 = 𝐷𝛻.𝜇 = 𝐷𝛻.(−𝜓 +𝜓/ − 𝜉.𝛻.𝜓) Cahn-Hilliard Equation

´ The fluid velocity comes in the Cahn-Hilliard Eqn via the convection term. 
The surface tension enters the fluid equation of motion as a force:

𝜕P𝑣⃑ + 𝑣⃑ K 𝛻𝑣⃑ = −
𝛻𝑃
𝜌 −𝜓𝛻𝜇 + 𝜈𝛻.𝑣⃑



Basic Equations for SD
´ The governing equations for incompressible 2D Spinodal Decomposition are:

𝜕P𝜓 + 𝑣⃑ K 𝛻𝜓 = 𝐷𝛻.(−𝜓 + 𝜓/ − 𝜉.𝛻.𝜓)

𝜕P𝜔+ 𝑣⃑ K 𝛻𝜔 =
𝜉.

𝜌
𝐵" K 𝛻𝛻.𝜓 +𝜈𝛻.𝜔

With 𝑣⃑=𝑧W×𝛻𝜙,𝜔 = 𝛻.𝜙,𝐵" = 𝑧W×𝛻𝜓, 𝑗" = 𝜉.𝛻.𝜓

´ The governing equations for incompressible 2D MHD are:

𝜕P𝐴 + 𝑣⃑ K 𝛻𝐴 = 𝜂𝛻.𝐴

𝜕P𝜔 + 𝑣⃑ K 𝛻𝜔 =
1
𝜇\𝜌

𝐵 K 𝛻𝛻.𝐴 + 𝜈𝛻.𝜔

With 𝑣⃑=𝑧W×𝛻𝜙,𝜔 = 𝛻.𝜙, 𝐵 = 𝑧W×𝛻𝐴, 𝑗 = ]
^_
𝛻.𝐴

´ Note that the magnetic potential 𝐴 is a scalar in 2D

´ MHD with a constant hyper-resistivity is more similar to SD.

´ Differences:

´ 2D SD contains negative diffusion, nonlinear diffusion and hyper-diffusion, these additional terms offer more challenges 
compared to 2D MHD.

´ By definition 𝜓 ∈ [−1,1], while 𝐴 doesn’t have such restriction
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2D SD 2D MHD

𝜓 𝐴

𝜉. 1/𝜇\
𝐷 𝜂

−𝜓: Negative diffusion term

𝜓/ : Self nonlinear term

−𝜉.𝛻.𝜓	: Hyper-diffusion term

𝐴: Simple diffusion term



Ideal Conserved Quantities

´ 2D SD

1. Energy: 

𝐸 = :(
𝑣.

2 +
𝜉.𝐵".

2 )𝑑.𝑥

2. Mean Square Concentration

𝐻" = :𝜓. 𝑑.𝑥

3. Cross Helicity

𝐻c = : 𝑣⃑ K 𝐵" 𝑑.𝑥

´ 2D MHD

1. Energy: 

𝐸 = :(
𝑣.

2 +
𝐵.

2𝜇\
)𝑑.𝑥

2. Mean Square Magnetic Potential

𝐻$ = :𝐴. 𝑑.𝑥

3. Cross Helicity

𝐻c = :𝑣⃑ K 𝐵𝑑.𝑥

12/2/15APS DPP 2015

9 (𝐷, 𝜂 = 0; 𝜈 = 0)



Dissipation of Conserved Quantities

´ Spinodal Decomposition

1. Energy:

2. Mean Square Concentration:

3. Cross Helicity:

Note that the energy 𝐸	and mean square 
concentration 𝐻" will NOT always 
decrease in unforced case.

Actually in all unforced runs, 𝐻" increases
monotonically,with an upper bound of 1.

´ 2D MHD

1. Energy:

2. Mean Square Magnetic 
Potential:

3. Cross Helicity:

Note that the energy 𝐸d*e
and mean square magnetic 
potential 𝐻$ can only decrease 
in unforced case.
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−𝜓 + 𝜓/− 𝜉.𝛻.𝜓
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Waves in SD and MHD

´ The linear dispersion relation in 2D SD is:

𝜔 𝑘 = ±
𝜉.

𝜌 𝑘×𝐵"\ −
1
2 𝑖 𝐶𝐷 + 𝜈 𝑘.

Where 𝐶	is a dimensionless coefficient which could be either positive or negative 
depending on 𝑘	:

When 𝐶𝐷+ 𝜈 > 0 , the wave is a damping wave; when 𝐶𝐷 + 𝜈 < 0, it is an 
instability. 

The SD wave is like a capillary wave: it only propagates along the boundary of the
two fluids, where the gradient of concentration 𝐵"\ ≠ 0. Surface tension offers 
restoring force.

The SD wave is similar to Alfven wave: they have similar dispersion relation;they
both propagates along 𝐵\ field lines; both magnetic field and surface tension act
like an elastic restoring force.

´ The linear dispersion relation in 2D MHD is:

𝜔 𝑘 = ±
1
𝜇\𝜌

𝑘×𝐵\ −
1
2 𝑖 𝜂 + 𝜈 𝑘.
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Length Scales of SDTurbulence

Dissipation Scale: 
𝐿m = 𝐿no = (𝜈.𝑣$/𝜖)]//, where 𝑣$ is 
the analogue to Alfven speed. This 
expression is an analogue to the MHD 
dissipation scale by Iroshnikov–
Kraichnan (IK) theory:Tr~

(st)u

sv
~ (wxy )u

z
.
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Hinze Scale: 𝐿*~(
{
|
)}//~𝜖 }./~~({

� )
}//~𝜖 }./~. It’s the 

length scale with the balance between the turbulent kinetic 
energy (break up large blobs) and surface tension energy 
(stick small blobs together). For scales smaller than Hinze 
scale (i.e. in the elastic range), the blobs tend to coalesce 
by surface tension, while for scales larger than Hinze scale, 
the blobs tend to break up by turbulence.

𝐻" Spectrum
𝐻"�

𝑘𝑘�� 𝑘* 𝑘m

Elastic Range
Hydro-
dynamic 
Range



Turbulent Transport

´ ZeldovichTheorem 𝐵. = ��
�
𝐵 . in MHD implies even a weak mean

magnetic field can result in a large mean square fluctuation. [Diamond 2010]

´ Elastization in MHD:small scale magnetic field will result in enhanced memory.

´ Turbulent transport (𝜂�, 𝜈� ) in MHD with even a weak large scale magnetic
field is suppressed by the enhanced memory. [Cattaneo 1994,Tobias 2007]

´ In the elastic range in the spectra, the enhanced memory effect dominates and
stops the forward energy cascade.
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Pure hydrodynamics
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MHD,with strong small
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Turbulent Transport

´ Initial ideas on Spinodal Decomposition:based on the following
similarities between MHD and SD,we expect the suppression of
turbulent transport by enhanced memory also occurs in SD:

´ The study of effective diffusivity𝐷� and effect viscosity 𝜈� in 2D SD
turbulence and the effect of memory is ongoing.

´ Also similar to the drag reduction in flexible polymers in dilute 
solution.
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MHD SD

Magnetic field lines offer elasticity Surface tension offers elasticity

Magnetic flux blob coagulation Blob coalescence process

Inverse cascade of mean square magnetic potential Inverse cascade of mean square concentration

There is an elastic range where magnetic energy
dominates

There is an elastic range where surface tension
energy dominates



Simulation Setup

´ Pixie2d code [Chacon 2002] is used to simulate the system. Pixie2d
originally solves the 2D MHD equation,and now is modified to be able to
solve the spinodal decomposition equation,too. It is a Direct Numerical
Simulation that solves the following equations in real space:

´ Initial condition: by default 𝜓 in each cell is assigned to 1 or −1. randomly; 
𝜙 = 0 everywhere. Other initial conditions are also considered.

´ Boundary condition: doubly periodic.

´ External force for either 𝜓 or 𝜙: an isotropic homogeneous force that has a 
wave number 𝑘�� :

𝐹 = 𝐹\ sin(𝑘�� cos 𝜃 𝑥 + 𝑘�� sin 𝜃 𝑦 + 𝜑)

where 𝜃 and 𝜑 are both random number in [0, 2𝜋), they are random angle and 
random phase respectively.
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𝜕P𝜓 + 𝑣⃑ K 𝛻𝜓 = 𝐷𝛻. −𝜓+ 𝜓/ − 𝜉.𝛻.𝜓 +𝐹"

𝜕P𝜔 + 𝑣⃑ K 𝛻𝜔 =
𝜉.

𝜌
𝐵" K 𝛻𝛻.𝜓+ 𝜈𝛻.𝜔 + 𝐹�

With 𝑣⃑=𝑧W×𝛻𝜙, 𝜔 = 𝛻.𝜙,𝐵" = 𝑧W×𝛻𝜓, 𝑗" = 𝜉.𝛻.𝜓



𝐻$ Spectrum

´ Assuming a constant energy transfer/dissipation rate 𝜖, the IK theory gives 
the energy spectrum for forward energy cascade: 𝐸� = 𝐶no(𝜖𝑣$)]/.𝑘}//. , 
thus by dimensional analysis the 𝐻$ spectrum is: 

𝐻$� = 𝐶no(𝜖𝑣$)]/.𝑘}�/.

´ Assuming a constant 𝐻$ transfer/dissipation rate 𝜖*$ , by dimensional 
analysis we obtain the mean square potential energy spectrum for inverse
𝐻$ cascade:

𝐻$�~𝜖*$.//𝑘}�//
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´ We obtain the correct 2D MHD
forward energy cascade exponent
− 7/2	with this code. Initial
condition: large scale 𝐴 field and 𝜙
field. See the right figure (Run 5).

MHD

Forward Energy Cascade

Inverse 𝐻$ Cascade



𝐻" Spectrum

´ The unforced mean square concentration 𝐻" spectrum has an
exponent−7/3 (𝐻"�~𝜖*".//𝑘}�//). See the left figure (Run 7). This
result suggests an inverse 𝐻" cascade in SD,and is consistent with
the blob coalescence process.

´ When 𝜙 is forced at large scale (kin=4), at scales smaller than Hinze 
scale, the mean square concentration 𝐻" spectrum still has the
exponent−7/3, See the right figure (Run 8).The elastic range is
shortened because the Hinze Scale becomes smaller.
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Length Scale Growth

´ For spinodal decomposition, define
Structure function as

𝑆� 𝑘, 𝑡 ≝< |𝜓�(𝑘, 𝑡)|
. >

´ Then define the blob length scale by

𝐿 𝑡 = 2𝜋
∫ 𝑆� 𝑘, 𝑡 𝑑𝑘
∫ 𝑘𝑆� 𝑘, 𝑡 𝑑𝑘

´ We see there is a clear peak in the
structure function.This verifies there
is a single definite blob structure
length scale in the SD turbulence
[Furukawa 2000]. See the right figure
(Run 4).
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Length Scale Growth

´ The blob length scale grows with time as a power law if unforced:𝐿 𝑡 ~𝑡.//.
Derivation: 𝑣⃑ K 𝛻𝑣⃑~ �u

{
𝛻.𝜓𝛻𝜓 ⇒ ẇu

w
~ |
{
]
wu

. [Kendon 2001]

´ When external force is present, the growth of length scale can be arrested.
The larger the external force is, the smaller the saturated length scale
becomes. [Berti 2005]

´ The saturated length scale is related to the Hinze Scale (the balance 
between the turbulent kinetic energy and surface tension energy). See the
right figure (Run 3).

12/2/15APS DPP 2015

19 SD



Length Scale Growth

´ Given similar small scale 𝐴 field initial conditions, the previous structure 
function evolution and the blob length scale growth arguments for 2D SD
also apply to 2D MHD.

´ By similar argument,we obtain the length scale growth for 2D MHD:

𝐿 𝑡 ~𝑡]/.. Derivation: 𝑣⃑ K 𝛻𝑣⃑~ ]
{
𝚥×𝐵 ⇒ ẇu

w
~ ]
^_{

$u

w�
.

´ The simulation result verifies the exponent 1/2	, see the figure below (Run 6).

´ This is a new result for 2D MHD illuminated by the study of Spinodal
Decomposition.
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2D SD 2D MHD

𝑆� 𝑘, 𝑡 ≝< |𝜓�(𝑘, 𝑡)|
. > 𝑆� 𝑘, 𝑡 ≝< |𝐴�(𝑘, 𝑡)|

. >

𝐿 𝑡 = 2𝜋
∫𝑆� 𝑘, 𝑡 𝑑𝑘

∫𝑘𝑆� 𝑘, 𝑡 𝑑𝑘
𝐿 𝑡 = 2𝜋

∫𝑆� 𝑘, 𝑡 𝑑𝑘

∫𝑘𝑆� 𝑘, 𝑡 𝑑𝑘



PDF of 𝜓/𝐴
´ The Probability Density Function (PDF) of concentration 𝜓 for unforced

spinodal decomposition has sharp peaks at ±1.This shape is mainly due to
the well shape of the free energy Φ 𝜓 . See the upper figure below (Run 7).

´ The PDF for magnetic potential 𝐴 for 2D MHD has one peak at 0. See the
lower figure below (Run 6).This is an interesting difference between spinodal
decomposition and 2D MHD.
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PDF of 𝜓
´ The PDF of concentration 𝜓 for spinodal decomposition may change

its shape dramatically when external forcing is large enough. See the
lower figure below (Run 8), the only change from the previous PDF
of 𝜓 is the presence of external forcing.

´ [Náraigh 2007] observed similar phenomena in a passive Cahn-
Hilliard flow simulation.An issue raised:why do I see the same
phenomena in an active flow simulation?What’s the role of the
advection term in Cahn-Hilliard Eqn?

´ It seems that the phase transition is reversed by large enough
external forcing.This may be the noise-induced phase transition.
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Conclusion

´ The mean square concentration 𝐻"	spectrum in unforced spinodal 
decomposition has an exponent−7/3 in the elastic range.

´ The mean square concentration 𝐻" spectrum in large scale forced 
spinodal decomposition still has an exponent−7/3 in the elastic range.
The elastic range is shortened because the Hinze Scale becomes smaller.

´ The blob length scale in spinodal decomposition grows as 𝐿 𝑡 ~𝑡.// for
unforced case. When external forcing is present, the length scale growth 
saturates at the Hinze scale 𝐿*~(

{
|
)}//~𝜖 }./~.

´ In 2D MHD we can observe similar length scale growth, but with a 
different exponent: 𝐿 𝑡 ~𝑡]/..

´ The PDF of concentration 𝜓 in spinodal decomposition has peaks at ±1, 
while the PDF of magnetic potential 𝐴 in 2D MHD has one peak at 0.

´ Large enough external forcing can reverse the phase transition, and make 
the PDF of concentration 𝜓 peak at 0.
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Future Work

´ Study the effect of memory to turbulent transport in spinodal
decomposition.

´ Calculate the effective diffusivity𝐷� and effect viscosity 𝜈� in 2D SD
turbulence. Compare them with the physics of effect resistivity and
effect viscosity in 2D MHD.

´ Calculate the concentration flux in 2D SD turbulence and analyze
the physics behind.

´ Do a forced 2D MHD run with similar initial condition to 2D SD
runs to see whether we obtain a similar length scale growth arrest.

´ Study the role of the capillary wave in spectra in 2D SD turbulence.

´ Find a explanation for the PDF shape change of 𝜓 when the external
forcing is present.
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Appendix: Simulation Parameters
Run Physics System Resolution Box	size D ν ξ k0 F0ϕ kinϕ F0ψ kinψ
Run	1 SD 512^2 2π 1.00E-03 1.00E-03 0.015 512 0 0 0 0
Run	2 SD 512^2 2π 1.00E-03 1.00E-03 0.015 512 0.1 4 0 0
Run	3 SD 512^2 2π 1.00E-03 1.00E-03 0.015 512 0.2 4 0 0
Run	4 SD 1024^2 512 1 0.01 0.5 1024 0 0 0 0
Run	5 MHD 1024^2 2π 1.00E-04 1.00E-04 - 5 0 0 0 0
Run	6 MHD 1024^2 2π 1.00E-04 1.00E-04 - 1024 0 0 0 0
Run	7 SD 1024^2 2π 1.00E-03 1.00E-03 0.015 1024 0 0 0 0
Run	8 SD 1024^2 2π 1.00E-03 1.00E-03 0.015 1024 1.0 4 0 0
Run	9 SD 1024^2 2π 1.00E-03 1.00E-03 0.015 1024 0.1 4 0 0
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